# Appomattox River TMDL Development

Final Public Meeting 3/11/2004



### The Lower Appomattox River

There are 11 impaired segments in the lower portion of the watershed:

- 1 segment violating Virginia's General Water Quality Standard (Benthic)
- 10 segments violating Virginia's fecal bacteria standard

### The Benthic Impairment

XT Deep Creek – An unnamed tributary to Deep Creek (first-order) passing by the Crewe STP.



#### General Standard

"All state waters shall be free from <u>sewage</u>, industrial waste, or other waste substances ... which are harmful to human, animal, plant, or <u>aquatic life</u>" (9 VAC 25-260-20)

#### Stressor Identification

Stressors identified in the Unnamed Tributary to Deep Creek include:

- Sub-optimal natural habitat
- Overflows from the Town of Crewe Sewage Treatment Plant

## Interpretation of Stream Condition Index (SCI) scores



## SCI scores for XT Deep Creek

| Collection |           | Impaired      | d Station | Upstream Reference |           |  |
|------------|-----------|---------------|-----------|--------------------|-----------|--|
| Year       | Month     | SCI Condition |           | SCI                | Condition |  |
| 1994       | November  | 6.2           | SI        | 37.0               | MI        |  |
| 1995       | May       | 12.3          | SI        | 18.3               | SI-MI     |  |
| 1996       | May       | 6.6           | SI        | 38.2               | MI        |  |
| 1996       | October   | NA            | NA        | 24.3               | MI        |  |
| 1996       | November  | 11.2          | SI        | 11.4               | SI-MI     |  |
| 1997       | May       | 16.2          | SI        | 41.1               | MI        |  |
| 1997       | November  | 26.0          | MI        | 44.4               | MI        |  |
| 1998       | May       | 22.4          | MI        | 37.0               | MI        |  |
| 2002       | June      | 27.3          | MI        | 43.0               | MI        |  |
| 2002       | September | 33.4          | MI        | 33.8               | MI        |  |

## General Quality Allocations

Average annual loads of raw sewage allocated to XT Deep Creek.

| Source           | Load (kg/yr) |
|------------------|--------------|
| WLA <sup>1</sup> | 0            |
| LA               | 0            |
| MOS              | Implicit     |
| TMDL             | 0            |

<sup>&</sup>lt;sup>1</sup> The only point source permitted in the drainage is the Crewe STP (VPDES # VA0020303).

## Fecal Coliform Impairments

 10 segments violating Virginia's fecal coliform instantaneous standard in the Lower portion of the watershed

|                      |             | Count | Minimum     | Maximum     | Violations <sup>1</sup> | Violations <sup>2</sup> |
|----------------------|-------------|-------|-------------|-------------|-------------------------|-------------------------|
| Impairment           | Station     | (#)   | (cfu/100ml) | (cfu/100ml) | (%)                     | (%)                     |
| Appomattox River (1) | 2-APP118.04 | 107   | 17          | 16,000      | 19                      | 28                      |
| Appomattox River (2) | 2-APP012.79 | 140   | 18          | 16,000      | 12                      | 27                      |
| Appomattox River (3) | 2-APP001.53 | 145   | 18          | 9,200       | 10                      | 21                      |
| Deep Creek           | 2-DPC005.20 | 57    | 18          | 16,000      | 11                      | 25                      |
| Flat Creek           | 2-FLA001.95 | 58    | 78          | 16,000      | 21                      | 40                      |
| Nibbs Creek          | 2-NBB003.65 | 44    | 20          | 5,100       | 16                      | 50                      |
| Swift Creek (1)      | 2-SFT036.00 | 58    | 18          | 4,000       | 10                      | 14                      |
| Swift Creek (2)      | 2-SFT019.15 | 40    | 18          | 16,000      | 10                      | 13                      |
| Swift Creek (3)      | 2-SFT004.92 | 54    | 18          | 16,000      | 9                       | 20                      |
| West Creek           | 2-WET004.96 | 22    | 45          | 16,000      | 14                      | 41                      |

## Fecal Bacteria TMDL Development

- Source Assessment
  - Bacterial Source Tracking
- Modeling
  - Hydrology
  - Water Quality
- Load Allocation



#### Source Assessment

Process of quantifying all major sources producing bacteria and determining delivery mechanism carrying bacteria to stream.

- Identification, quantification and delivery mechanisms
  - Permitted discharges
  - Human
  - Pets
  - Livestock
  - Wildlife



## **Bacterial Source Tracking**

Laboratory method of analyzing fecal bacteria in water samples to determine their source (e.g. human, pets, livestock, or wildlife).

- Monthly Samples Collected for 1 Year
- Useful Tool for Assessing the Sources of Fecal Contamination
- Should Be Considered in Conjunction with Other (Field) Data



### Bacterial Source Tracking - Results

| Station ID | Stream           | Wildlife | Human | Livestock | Pet |
|------------|------------------|----------|-------|-----------|-----|
| 2APP001.53 | Appomattox River | 17%      | 5%    | 50%       | 28% |
| 2APP012.79 | Appomattox River | 21%      | 10%   | 46%       | 23% |
| 2APP050.23 | Appomattox River | 17%      | 7%    | 55%       | 21% |
| 2APP068.93 | Appomattox River | 26%      | 6%    | 40%       | 28% |
| 2APP090.12 | Appomattox River | 18%      | 12%   | 52%       | 18% |
| 2DPC005.20 | Deep Creek       | 16%      | 9%    | 59%       | 16% |
| 2FLA001.95 | Flat Creek       | 24%      | 8%    | 53%       | 15% |
| 2NBB001.54 | Nibbs Creek      | 22%      | 6%    | 57%       | 15% |
| 2NBB003.65 | Nibbs Creek      | 19%      | 12%   | 58%       | 11% |
| 2SFT004.92 | Swift Creek      | 12%      | 10%   | 51%       | 27% |
| 2SFT019.15 | Swift Creek      | 28%      | 16%   | 41%       | 15% |
| 2SFT036.00 | Swift Creek      | 34%      | 8%    | 24%       | 34% |
| 2WET004.96 | West Creek       | 24%      | 3%    | 60%       | 13% |

<sup>\*</sup> Percentages given are weighted averages from multiple BST samples.

### Modeling

Establishes relationship between in-stream water quality and source loadings.

- •Model set-up
- Calibration
  - Hydrology
  - Water quality



#### **Load Allocation**

Determine waste load and load allocations along with margin of safety for a reduction scenario that meets WQS

- Develop load reduction scenarios
- Model scenarios
- Select a scenario that meets
   WQS as the TMDL



## Load Allocations – Stage I/Management Scenarios

#### Reduction percentages for the Stage I implementation.

| Impairment Name      | Direct<br>Wildlife                      | NPS<br>Wildlife | Direct<br>Livestock | NPS Pasture / | NPS Res./<br>Urban | Straight<br>Pipe/ | % Single Samples |
|----------------------|-----------------------------------------|-----------------|---------------------|---------------|--------------------|-------------------|------------------|
|                      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | * * 1101110     | 21 ( 65 ( 6 ( 1 )   | Livestock     | CIMAL              | Sewer             | Exceeding        |
|                      |                                         |                 |                     | Access/       |                    | Overflow          | 235 cfu/         |
|                      |                                         |                 |                     | Cropland      |                    |                   | 100ml            |
| Appomattox River (1) | 0                                       | 0               | 90                  | 50            | 50                 | 100               | 14.03            |
| Appomattox River (2) | 0                                       | 0               | 90                  | 50            | 50                 | 100               | 11.89            |
| Appomattox River (3) | 0                                       | 0               | 0                   | 50            | 50                 | 100               | 12.5             |
| Nibbs Creek          | 0                                       | 0               | 90                  | 50            | 50                 | 100               | 12.42            |
| Flat Creek           | 0                                       | 0               | 90                  | 50            | 50                 | 100               | 12.6             |
| West Creek           | 0                                       | 0               | 90                  | 50            | 50                 | 100               | 24.82            |
| Deep Creek           | 0                                       | 0               | 90                  | 50            | 50                 | 100               | 24.71            |
| Swift Creek (1)      | 0                                       | 0               | 90                  | 25            | 25                 | 100               | 5.86             |
| Swift Creek (2)      | 0                                       | 0               | 75                  | 45            | 45                 | 100               | 9.97             |
| Swift Creek (3)      | 0                                       | 0               | 25                  | 45            | 45                 | 100               | 9.75             |

## Load Allocations – Example Scenarios for Appomattox River Watershed

|          | Per      | cent Reduct | tion            | Percent Violations |           |          |            |          |
|----------|----------|-------------|-----------------|--------------------|-----------|----------|------------|----------|
|          | Direct   | NPS         | Direct          | NPS                | NPS Res./ | Straight | GM > 126   | Single   |
| Scenario | Wildlife | Wildlife    | Livestock       | Pasture /          | Urban     | Pipe/    | cfu/ 100ml | Sample   |
| Number   |          |             | Livestock Sewer |                    |           | Sewer    |            | Exceeds  |
|          |          |             |                 | Access /           |           | Overflow |            | 235 cfu/ |
|          |          |             |                 | Crops              |           |          |            | 100ml    |
| 1        | 0        | 0           | 0               | 0                  | 0         | 0        | 33.33      | 17.7     |
| 2        | 0        | 0           | 100             | 100                | 100       | 100      | 20         | 2.58     |
| 3        | 0        | 0           | 90              | 50                 | 50        | 100      | 23.33      | 7.51     |
| 4        | 0        | 0           | 50              | 50                 | 50        | 100      | 25         | 9.7      |
| 5        | 30       | 0           | 100             | 80                 | 80        | 100      | 13.79      | 3.55     |
| 6        | 38       | 78          | 100             | 99                 | 99        | 100      | 0          | 0        |

#### Load Allocations – the TMDLs

| Impairment                 | WLA<br>(cfu.year) | LA<br>(cfu/year) | MOS  | TMDL (cfu/year) |
|----------------------------|-------------------|------------------|------|-----------------|
| Appomattox River (1)       | 4.74E+12          | 6.86E+14         |      | 6.90E+14        |
| Appomattox River (2)       | 1.40E+13          | 5.87E+14         |      | 6.01E+14        |
| Appomattox River (3)-tidal | 9.62E+13          | 1.02E+15         |      | 7.85E+14        |
| Deep Creek (FC)            | 1.38E+12          | 1.05E+14         | it   | 1.06E+14        |
| Flat Creek                 | 8.32E+11          | 8.72E+13         | lic  | 8.80E+13        |
| Nibbs Creek                | 8.32E+11          | 1.20E+13         | Impi | 1.29E+13        |
| Swift Creek (1)            | 8.37E+09          | 2.01E+13         | In   | 2.01E+13        |
| Swift Creek (2)            | 3.80E+11          | 8.38E+13         |      | 8.42E+13        |
| Swift Creek (3)            | 5.82E+11          | 1.28E+14         |      | 1.29E+14        |
| West Creek                 | 0.00E+00          | 3.91E+13         |      | 3.91E+13        |

<sup>\*</sup> All loads presented in the TMDL table are given in cfu/year for E. coli

#### Poster Session



#### **Contact Information**

- Phillip McClellan, MapTech
  - 1715 Pratt Drive Suite 3200
  - Blacksburg, VA 24060
  - **5**40-961-7864
  - Email <u>pmcclellan@maptech-inc.com</u>
  - Web <a href="http://www.maptech-inc.com">http://www.maptech-inc.com</a>
- TMDL Documents
  - Chris French, DEQ TMDL Coordinator
  - Piedmont Regional Office
  - **804-527-5124**
  - Email <u>rcfrench@deq.state.va.us</u>
  - Web <a href="http://www.deq.state.va.us/tmdl/">http://www.deq.state.va.us/tmdl/</a>

